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Abstract—The singular part of the elastodynamic field in the vicinity of a propagating crack tip
plays an important role in fracture mechanics considerations. The dynamic solution near a crack
tip which branches or kinks is required to understand the observed bifurcation events in brittle
materials. We consider a rather general time dependent stress wave loading incident at an arbitrary
angle on a semi-infinite crack in a linear elastic solid. To model the kinking of a stationary crack
under stress wave loading correctly, a delay time for initiation of the new crack must be included
which means the problem loses the property of self-similarity and makes it significantly more
difficult. A perturbation method is used to obtain the dynamic stress intensity factor for the kinking
crack, The method relies on solving simple problems which can be used with linear superposition
to solve the problem of a kinked crack. The solution is represented in a simple closed form as a
function of the incident angle « of the stress wave, the kink angle &, the kinking crack speed v, and
the finite delay time £, This gives more information about the effect of parameters on the solution
than the purely numerical resuits. Finally, the maximum of the energy flux into the propagating
kinked crack tip is found as a function of kink angle and crack tip velocity, and some implications
of this are discussed.

INTRODUCTION

When a crack forms in a brittle material, such as glass and some plastics and metals at low
temperatures, there appears (from experimental results, e.g. Ravi-Chandar and Knauss(1])
to be a maximum crack tip velocity which is significantly less than the theoretically expected
maximum of the Rayleigh wave speed[2]. This maximum crack tip speed seems to prevent
the crack tip from absorbing enough energy under high loads and the single crack becomes
unstable. In an attempt to absorb more energy, it searches for alternative paths, and the
observed behavior is the commonly seen bifurcation event{3, 4]. This phenomenon becomes
particularly frequent when the speed of crack propagation becomes relatively large.

Another case where kinking occurs is when a stress wave of sufficiently high magnitude
impacts on a stationary crack. Ravi-Chandar and Knauss[1, 5-8] have recently performed
some carefully controlled experiments with dynamic loading of a long crack. Examples of
such situations are earthquake generated stress waves on faults in the earth’s crust and
impact loading of a body in which the loading is rapid enough to cause stress wave motion.

It has been shown (see [9], for example) that stress wave loading of a crack in a linear
elastic material causes a dynamic overshoot of the stress intensity factor when compared
with a similar loading applied quasi-statically. It is therefore possible that a crack which
will remain stationary under quasistatic loading, may become unstable under dynamic
loading and propagate. The direction of propagation, as well as the velocity of crack
propagation, at the instant of initiation will depend on the local stress field around the
crack tip. Experimental observations of the magnitude of the speed of crack propagation
at branching suggest that elastodynamic effects play a significant role. It has been
observed(3,10,11] that theangle of branches of the bifurcated crack isapproximately 25° ~ 40°,
and the velocity of the bifurcated crack tips is about 10% less than the crack tip velocity
just prior to bifurcation.
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The problem of a crack that is branching at an arbitrary angle is difficult to solve;
hence the analytical work is rather limited. and most of it is elastostatic in nature. For
antiplane strain, elastostatic analyses were presented by Sih[12] and Smith[13]. The in-
plane problems were treated by Cotterell and Rice[14] who used a perturbation technique,
similar to that proposed independently by Banichuk[15] to derive the conditions necessary
for slightly out-of-plane quasistatic growth of a semi-infinite straight crack under mixed-
mode loading conditions. Karihaloo ¢/ «/.[16] have extended these results to higher-order
terms of the asymptotic expansion.

A great deal of progress has been made recently in analyzing the problem of a semi-
infinite crack under stress wave loading. All the analyses require that the dynamic problem
considered be self-similar in the variables r (distance from original crack tip) and time .
This puts a restriction on the problems that can be considered. For antiplane strain
deformation, it has been considered by Burgers and Dempsey[17] analytically for bifurcation
half-angles = 0, /2 and numerically by Burgers for all the angles in between[18]. Sub-
sequently Dempsey et al.[19] have used a conformal mapping to obtain the analytical
solution for kinking crack under stress wave loading. More recently, the problem of
asymmetric crack bifurcation under stress wave loading has been studied by Dempsey ¢r
al.[20]. The plane strain deformation of kinking case has been solved numerically by
Burgers{21] and the bifurcation case by Burgers and Dempsey[22]. The analytical sofution
for this mixed Mode-I-11 problem has not been found yet.

The transient elastodynamic nonplanar crack growth solutions mentioned above are
all for the case when the geometry and loading conditions make the problem self-similar.
That is, the loading must cause stresses or rates of stresses which are functions of 6 and r/t
only. For this to be so, the geometry must have no characteristic length associated with it.
This property of self-similarity allows Chaplygin’s transformation and a conformal mapping
to be used to solve these problems analytically[17, 19, 20]. In all these models, it is assumed
that the new crack initiates out of the original crack tip at an angle § at the same time as
loading is applied on the crack faces (or the stress wave loading is passing the original crack
tip). It was observed by Achenbach{23] that if a plane stress pulse strikes the half-plane
crack in an initially undisturbed medium, instantaneous crack propagation can occur only
if the stress pulse front carries a square-root singular stress. Hence it will greatly improve
the model by allowing a finite delay time in the initiation of the nonplanar crack. But if we
do so, the problem loses its self-similar nature. The only solution for the newly initiated
crack propagating after a delay time has been obtained by Freund[24], and this solution is
restricted to the crack remaining straight.

We consider the dynamic crack growth out of the original semi-infinite crack at an
angle to the original crack at some time after the dynamic loading is applied to the crack
faces (or after the stress wave loading initially interacts with the crack tip). A perturbation
method is used to obtain the first order analytic closed form solution near the kinking crack
tip. By setting the finite delay time ¢ to zero, this solution agrees closely with the semi-
analytical numerical results in [25] where it is shown that the range of kinking angles and
crack-tip speeds for which this approximation gives good results is surprisingly large in
comparison with exact results[19]. The closed form solution gives more analytical infor-
mation than the purely numerical results so that the effect of certain parameters on the
solution can easily be seen. The elastodynamic stress intensity factors of the kinking crack
tip are used to compute the corresponding fluxes of energy into the propagating crack tip.
For a specific incident angle of the stress wave loading, the energy flux into the crack tip
shows a distinct maximum at a particular combination of crack-kinking angle and crack-
tip speed.

1. DEFINITION OF PROBLEM AND SOLUTION METHODOLOGY

Consider a stress-free linear elastic homogeneous isotropic infinite medium that con-
tains a stationary semi-infinite crack, which will be referred to as the original crack. At time
1 = 0, an incident horizontally polarized transverse wave with angle « strikes the stationary
crack tip. A short time later, at 1 = ¢,, a new crack propagates out of the original semi-
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infinite crack. The velocity of propagation v, is constant and less than the shear wave speed
v,. The line of propagation is straight, making an angle é with the original crack, thus
producing a kinked crack. The crack generates a plane reflected wave and a cylindrical
diffracted wave. The pattern of wavefronts and the position of the crack tip for ¢ > ¢, are
shown in Fig. 1.

The propagation of horizontally polarized transverse waves in a homogeneous,
isotropic, linearly elastic medium is governed by the two-dimensional wave equation

ow  w *w
W= (-1

where b is the slowness of the transverse wave given by

b=1/v,=/p/u.

w(x, z, 1) is the displacement normal to the xz-plane; u and p are the shear modulus and
the mass density of the material, respectively. The nonvanishing stresses are

T,y = H(OW/0x), 1,, = u(0w/0z). (1.2)
The incident stress wave is of the form
0 = —1oH[1+(x/v,) sin a—(z/v,) cos a], (1.3)

where H( ) is the Heaviside step function. We will extend the analysis to more general time
dependence of the incident wave later. The method of solving this problem relies on an
asymptotic approach. We use the perturbation procedure indicated by Kuo and Achen-
bach[26] which expresses the elastodynamic fields near a kinked crack in terms of a power
series of 8. Each order in the approximation requires the field for a crack which propagates
in its own plane, but where the crack faces are subjected to crack-face tractions which
are related to the actual crack-kinking geometry. It is also shown that the second-order
contribution to the Mode-III stress intensity factor vanishes, which corresponds to the
first-order approximation of stress intensity factor accurate up to o(6%). Hence the

Fig. 1. Geometry of wavefronts for a kinking crack subject to an incident stress wave.
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approximate results give good agreement with the exact solution up to large values of
the kinking angle. This suggests that the elastodynamic stress intensity factor for kinked
crack is affected more by dependence on the loading of the new crack faces than by the
wedge geometry at the original crack tip.

The kinking of cracks under dynamic loading can be separated into a number of
different problems all of which are relevant problems in their own right. By building up the
so-called fundamental solutions of these more basic problems, the solution to the final
complete problem can then be solved. The fundamental problems to be solved are the
following :

(i) The full field solution for diffraction of a step-stress wave as given in (1.3) by the
stationary semi-infinite crack. This problem can be analyzed by the use of integral trans-
forms together with an application of the Wiener—-Hopf technique and the Cagniard—de
Hoop method of Laplace inversion. A detailed description of the approach can be found
in [27, 28].

(i) The solution for the concentrated forces acting on the crack tip at the instant that
crack begins to extend at a constant speed. The forces have equal magnitudes, each being
the same general linear function of time and move in the same direction as the crack
propagating with a speed less than the crack speed. A similar problem has been solved in
Mode-I by Freund{24].

The final step will be to combine the problems (i) and (ii) to solve for the stress intensity
factor of the first-order approximation for the kinked crack that propagates with a constant
velocily in an analytic closed form.

2. THE FUNDAMENTAL SOLUTIONS

For a stationary semi-infinite crack, the diffracted stress fields for the incident step-
stress wave given in (1.3) are

2(r,6,1) = j"”’ ~ D, cos 0+ E(E—1)cos(0/2)+¢ sin « cos(36/2) & @

(§—sin 6,)(E+sin ;) (§—1)"?

— D, sin 64+ &(&—1) sin(6/2)+ &{sin(8/2) +sin a sin (36/2)]
(&—sin 8,)(&+sin 0)(& —1)"? &

(2.2)

tbr
tfy(rag’ I) = _DIJ‘]

where

Ty COS &

Di= n(l +sin a)"/?’

D, = sin 6 sin (6/2)+sin a cos (6/2),

0,=0—a, ,=0+a.
Combining 15 and 75, we find

1§, = 15, cos §—1§ sin |6]

Wb [sin @ sin (0/2)+sin a cos(6/2)+ ¢ cos(6/2)] (¢ —1)"?
=D (—sin 6,) (G +sin 67)

o [t J1-sin6, [ 8 9 [ br=1
=D|{2COS§\/E—1———CO—S—&——[SIH§+Cos<a—§ tan —_l—sin 90
/1+sin 6, [—sing+cos<a+f—)>}tan" /———-t/br—l }
T cosa 2 2 1+sin 6, (2.3)

d¢
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As r/bt = 0, (2.3) reduces to

2 f I —sin 6, +cos<a— 9)]
15, = cos = — S eosa sin = 5
n/1+sin 0, [

2cosa

—sin g— +cos (a + g)]} +o(l). (24)

Denoting the stress intensity factor at time ¢ < ¢, for stationary crack by K%(z), it is found
that

2,/27, cos at'“
7(1+sin a)b

lxm [\/2nx15,(x,0,0)] = K5(r) = 2.5)

Thus the stress intensity factor increases from zero as the square root of the time
measured from the instant the wave strikes the crack. The main reason for obtaining the
second and third term [which is of O(1)] in the asymptotic expansion (2.4) is that these two
terms will later play a significant role in the calculation of the stress intensity factor for the
kinking crack.

Now consider the case when the crack tip is at rest at x = 0 and there are no loads
acting on the body for ¢t < 0. At time ¢ = 0, the crack tip begins to move at a constant speed
v.. At the instant that the crack begins to extend, concentrated forces with magnitude n but
opposite sign appear at the crack tip, one on each crack face as shown in Fig. 2. For 1 > 0
the crack tip moves in the positive x direction with speed v, while the concentrated forces
move in the same direction with speed u < v,, as shown in Fig. 2. The forces have equal
magnitudes, each being the same general linear function of time (i.e. mt-+n), m and n are
arbitrary parameters which are independent of x and ¢. The boundary conditions on the
plane z = O are

©4,(x,0, 1) = (mt+n)A(x —ut)H(t) for —o0 < x <, (2.6)
wi(x,0,)=0 forvt < x < o, Q.7

where A is the Dirac delta function. The formulation is completed by specifying zero initial
conditions and by requiring the solution satisfy the equation governing the motion of an
elastic solid (1.1). Following Freund[24], the result is most easily obtained by considering
the two cases m = 1, n =0 and m = 0, n = 1 separately, and then adding the results for
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Fig. 2. The crack face loading corresponding to the fundamental solution.
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each case. For m = 0, n = 1, the boundary conditions are
1,(x,0,0) = A(x—ur)H(1)  for —0 < x < v, (2.8)
w{(x,0.0)=0 forvt<x< oo, 29

and subject to zero initial conditions. It is found to be convenient to eliminate the coordinate
x from the formulation in favor of a new coordinate ¢ defined by

E=x—v..
The (¢, z)-coordinate system is then fixed with respect to the moving crack tip as shown

on Fig. 2. The one-sided Laplace transform with respect to time and the two-sided Laplace
transform with respect to x are defined by

wi(,z,5) = J:o w'(&, z,t)e""ds, (2.10)

w4, z,s5) = Jw W(&, z,5) e dE. (2.11)

Applying the transform to the governing wave equation, the general solution for
outgoing waves is

Wwl(4, z, 5) = A(s, A) e, Ref =0, (2.12)
where

B(A) = (b1 — R+ b2 d? = 202A/d)'? = B, (A)B_(4).

(2.13)
Bo(A) =[bi(Fb/d))'?  d=1jv.

To ensure Re f§ > 0 everywhere in the i-plane, branch cuts are introduced from
b, = b/(1 +b/d)to c0,and from —b, = ~b/(1 —b/d)to — cv. A(s, A)is an unknown function
which can be evaluated from the transformed boundary conditions. The Laplace transform
is now applied to the boundary conditions (2.8) and (2.9) yielding

1,(4,0,8) = [h/sth— )+ F.(4,5), (2.14)
w'(4,0,5) = G_(4,9), (2.15)
where 4 is the inverse of the relative speed between the moving load and the crack tip,
h=1/(v.—u).
The functions F, and G_, which are as yet unknown functions of s and 4. For the
transform F, to exist, F, must be regular in the half-plane Re (1) > —b, and similarly.

G _ must be regular in the half-plane Re (4) < b,. The function A(s, 4) is eliminated from
(2.14) and (2.15), yielding the single equation of the standard Wiener-Hopf type,

h h 1 1 F.
B GTDER  Sh=D [m(z) - B+(h)]+ RO

Applying the well-known analytic continuation argument, the function F,(4) and
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G _(A) can be completely determined and the transforms can be inverted. We find

—h
G- = AR = L DD, @1
[, B
F,(,5) = sa_h)[l— ﬁ+(h)]. (2.18)

Then the shear stress on the plane z = 0, after formal inversion of the transforms, is

hB(—1/%)

R T e RO M) @19
and
. _ h(1—b/d)!1?
:1-,.,3 |:¢ Pl (£,0, t)] = — b+ hA—b/d] T (2.20)

In the same way, we can construct the solution for the case m = 1, n = 0,

_["__ w84 [hu]
"2’“’0")'L, BN G+RE B b P @21

where the subscript 4 denotes differentiation with respect to 4. The behavior of (2.21) as
¢ — 0 is obtained by applying a standard Tauberian theorem. The value of the limit is

h3(1 —bJd)¥?1"?
b+ h(1— b

{li‘},l [§"723(,0,0] = ~ (2.22)

With these fundamental solutions at hand, it is possible to determine the first-order
approximation for the stress intensity factor.

3. STRESS INTENSITY FACTOR OF KINKING CRACK

After the stress wave arrives at the original crack tip, the newly kinked crack begins
to extend at a constant rate at some finite delay time ¢ after diffraction has occurred. In
order to extend, the crack must negate the tractions at = § and 0 < r < v (t—1¢,) that are
found from the diffraction and incident fields:

T4)(r, 0, 1) = 13, + 1), forO<r<uolt—1), 3.1

7§, = —Tocos(a—0), 3.2)

where 7§, represents the incident field and <3, is the diffraction field as shown in (2.3). The
first-order approximation of the dynamic stress intensity factor for a kinked crack can be
expressed by the stress intensity factor for a straight crack propagating in its own plane
subjected the negative of the tractions given in (3.1) on the crack faces:

T,=0 for X < 0, (3.3)

Ty= —T(%/t,0 =0) for0 <X <uv(t—1). (34
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It is observed that 14,(X/t, 6) depends only on the ratio X/ for fixed . Using the
superposition described by Freund[24], this means that any fixed stress level radiates out
along the X-axis at a constant ratio u = X/t for 1 > 0, where u varies between zero and the
shear wave speed. The resultant force due to stress levels with speed between w and
u+du is t74(%/t, 6) du and acts at x = ut. The time and the place that the force element
t14,(X/t, 6) du appears through the moving tip are 1* = ht//d and x* = ur*. Hence the
magnitude of this force element is

*1g,(1/u, 0) du+ (1 — r*)tq,(1/u, 6) du.

The first term gives the magnitude of the force element at the instant it appears through
the crack tip at r*, and the second term indicates the magnitude increases linearly in time:
The stress intensity factor for this kind of force element [i.e. (2.6)] is the summation of
(2.20) and (2.22):

Kf(m,n,1) nh(1—bjd)'"? mh*(1 — bjd)*21'/?
n alb+h(1—=b/d)]2 2 alb+h(1—bjd) 2

(3.5)

Hence the first-order approximation of the stress intensity factor for the kinked crack
due to the diffraction field can be obtained by integration over all possible values of u. We
get

vt 1/t 1
K°(1,0,,68) = j T Kim= —1,n= —1*, t—t¥)p, (;, 6)du. (3.6)
0 .

If we replace the variable of integration u in (3.6) by A, we find that the sum of these
two terms is the derivative with respect to A of a single term. The superposition integral for
the stress intensity factor then takes the form

® (21 =bjdy |?{ (a*—h)'? h
Ko(,,vc,5)=—L 2{ — ] {[b+h(1 b/d)},,,}re,( — 1,6>dh, (3.7)

where

a* = t/(v.1y).

If we apply the integration by parts, neither the integrated term nor the remaining
integral will exist, even though the sum exists. To get around this difficulty, by the method
given in [24], the lower limit of integration in (3.7) is replaced by d+¢ as ¢ —»0. The
expression is then integrated by parts, and those terms which are singular at ¢ = 0 will
exactly cancel each other. The desired result can be obtained by taking the limit as ¢ - 0.

Integration by parts of (3.7) yields the sum of three terms

) 2t,(1—b V2 {(d*—d)\? 0
K”(t,vt,5)=lsgxoa28[ i d/d)] {( 2 [b,,z s (C1+C2)]

- — 2
+L (E;L%i‘:“b)mﬁ(‘fé’m dk}w(s), (38
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where
@) = — [b+h(1—b/d))*[Ab(v.h—1)+h cos (§/2))d*?
ook = nb2{h[1 —(b/d) sin ®,]+b sin ©,} {A[1 +(b/d) sin @,]—b sin O,} (h—d)*?’
(3.9
@|=5—-a, ®2=6+a,
o ) . _ Tgco8a
A = sin § sin (6/2)+sin a cos (6/2), B= ———-———(] s
M—sn®. [T
C, =——s—l—n&|:cos(a—é)+sin é], Cz=m cos(a+ é)—siné .
cos o 2 2 cos o 2 2

The second term in (3.8) comes from the last two terms in (2.4) which makes the
significant contribution to the sotution. This provides the real motivation for deriving the
asymptotic expansion (2.4). Evaluation of the real integral in the third term of (3.8) becomes
possible by converting it into a line integral in the complex h-plane and the closed form
solution can be found by changing the contour of integration.

As shown in Fig. 3, the integrand has branch-point singularities at 4 = d, d* and two
simple poles at

P bsin ©,
' T 1—(b/d)sin ©,°
bsin @,

1+ (b/d)sin @,

The integrand is single-valued in the plane cut along the real axis between 4 and d*.
Applying Cauchy’s integral theorem, the value of the integral along I" equals the residue at
h, and &, minus the value of integral along I', minus the integral along a circle of infinitely
large radius. Since the integrand is O(h?) as || — oo, the latter contribution is zero. We get

h2=

- (d*—h)"? (@), dh = [A+sin ©, cos(8/2)][d*(d—b sin ©,)+bd sin ©,]!/2
ive D+ R(1—bjd) 72 o O = 2(bd)"? sin 6 cos «
[ — A+sin ©, cos (6/2)][d*(d+b sin ©,)—bd sin ©@,]'? 2 4|(d*—d)d ”:_0(1)
2(bd)"'? sin 6 cos a 22 e )
h-plane
//// \\Em
/ >
/ \
/ \

-

-— \_-F__,’

Fig. 3. The contour in the complex A-plane which is used in evaluating the intergral in (3.8).
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The solutions in (3.8) are due to the diffraction field only. The stress intensity factor
due to the incident field (3.2) can be easily obtained as follows

I
K'(1,v,.8) = J“ —Kfm=0,n= —1,1—t,— xo/v)th, dx, (3.10)
2 _h! _ 1.2
= 214 c0s O,[———-—————(l bjd) tf):l .
nd

Finally, the first-order approximation of the stress intensity factor for the kinking
crack is the summation of the contribution due to diffraction and incident fields in (3.8)
and (3.10). After working out the details, it is found that

K(t,v,,8) = K™(1,0,,0)+ K'(1, v, 0)

_, [Z(I—b/d) v2 (o y b n® 172 b . 2
=21, 201 5 o) s\ A t-—-z(t—l,) sin @, + A4, I+(—1(l—t,) sin ©,

(—1)? : ‘ l4si _ 2
_(2d{,—)2 [Al\/l—smG)1+Az\/l+sm@2]+|:(_f_s'_n;)i_i)] cos@l}, G.11)

where
A, = [cos(x—d/2)+sin(§/2)], A= [cos(x+8/2)—sin(5/2)].
Relation (3.11) is the main result of this section. It is worth noting that when the

kinking angle § is zero, the new crack will propagate straight along the original crack path,
and that the solution on (3.11) will be exact:

(3.12)

K(t,v,8 = 0) = 2r4cos a[z(l —bld)[1+(b/d) sin a(thtf)]:lm.

wb(1 +sin %)

When the step function dependent stress wave loading strikes the original crack tip at
time ¢ = 0, the stress intensity factor of the stationary crack increases in proportion to '?
as shown in (2.5). At a certain instant of delay time, the crack tip starts in motion. Assuming
a critical energy balance criterion for crack initiation, the delay time ¢ is related to the
amount of energy y needed to create a unit area of fracture surface quasistatically by

umnyb(1 +sin o)
/™ 412 costa (3.13)
If we deal with the special case ¢, = 0, that is the crack kinking at the instant that the
incident stress wave strikes the original crack tip, the solution of (3.11) will give the same
results as the numerical integrations in [25]. Figure 4 shows the dimensionless elastodynamic
stress intensity factor for various values of the crack kinking angle § and the normalized
crack tip speed v, /v,, which is valid for ¢, = 0 and incident stress angle « = n/4. It is shown
in [25] that the error for the first-order approximation compared to the exact values in [19]
is less than 10% for any combination of angle of incident stress wave, kinked crack and
propagation speed of the crack. The error increases as é increases. However, for the kinking
angle we are interested in, —n/4 < < n/4, the error is even less than 2%. This good
agreement with the exact solution, as mentioned is due to the fact that the contribution of
the second-order approximation vanishes. It is unlikely that the error will be so small in
the plane strain case.
In order to see the influence of introducing the finite delay time 7, to the dynamic stress
intensity factor, we choose four kinking angles d = + /8, +n/4 and plot K vs t4t in Figs.
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Fig. 4. The normalized stress intensity factor vs kinking angle for ¢, = 0, « = #/4 and different values

of crack speeds.
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5 and 6. The instant of initiation of the kink is at time ¢ = ¢, When ¢/t = 0, the kinked
crack has propagated for an infinite time compared to the delay time ¢,. The results in [25]
are valid for this special case. As we can see from these two figures, the dimensionless stress
intensity factor is significantly different for ¢/t = 0 and 4t = 1. This difference increases as
the kinked crack angle, the incident stress wave angle and the kinked crack speed increase.
The difference is positive or negative depending on whether the kinked angle é is positive or
negative. If one wants to study the criterion for a crack kinking event, it is clear that the most
significant time scale involved will be when crack kinking has just occurred, in other words, in
the period of nondimensional time ¢/t near 1.

Besides the stress wave loading, step function loading that is suddenly applied uniformly

Fig. 5. The time history of stress intensity factor for 1 > 1, « = z/4, 6 = +x/8 and different values
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Fig. 6. The time history of stress intensity factor for ¢ > 1, « = #/4, 6 = 1 n/4 and different values
of crack speeds.

on the original crack faces is also of interest to us. For this case, we have

K* =1t,c08 0 [&:7{1_)_/1).]1/2 {l:“‘(b/d) (t—1y)sin 6]‘/2

b(1 —sin é)

+[1+(b/d)(1—t,)sin a]m 2[:-:,]'/2}
b(1 +sin 8) e ' (3.14)

Up to this point in the discussion, the time dependent of the stress wave loading profile
is a simple step in time. In experiments, it is impossible to produce a true step profile and,
instead, the stress wave loading pulse has a finite rise time. Suppose that at time ¢ = 0 the
stress wave loading has reached the original crack tip, and that the magnitude increases
according to some function of time, say f(f). After some finite rise time, say T, the magnitude
of the loading is held constant for 1 > T. Suppose for the moment that the crack propagation
delay time ¢, is larger than the loading rise time T. In this case, the stress intensity factor of
the kinking crack can be obtained for all time in a straightforward manner.

K= J-f’(s)Ks(t—s) ds, (3.15)
0
;._{t, fort< T,
AT, fort>T,

where K({) is the stress intensity factor for unit step stress wave loading profile. If the rate
of increase in magnitudes of the stress wave pulse is taken to be linear between f(0) = 0
and f(T) = 1o, then f°(f) = 1o/Tfor 0 < ¢ < Tand f(f) = 0 for T < 1. The stress intensity
factor of the whole time history is given by

.
4y/ 2% f:os a £ for0<t<T,
3/wlb(1 +sin a)]2T
K= {32058 1he (_yuy for T<t<t,  (3.16)

3 /A b(1 +sin @)]'2T
2./2t4(1 =b/d)!?
V(1 +sin @) 2T

(K|+K2+K3+K‘) for <t <o,




K = A,
K, = 22
K} - T(;;lx)ln
K,=Tcos O, [

Modc-111 crack kinking with delay time

where A, A, are given in (3.11).

It is emphasized at this point that the result shown above is valid only if the delay time
t,is greater than the rise time T. For the case when the crack kinked before the magnitude
of the stress wave loading reaches its maximum level t,, that is for the case 7,< T, the
solution is much more complicated to analyze and is discussed in [29].

The stress intensity factor history for the case t,> T, given in (3.16), has been evaluated
numerically and is shown in Figs. 7 and 8 for kinking crack tip speeds v, = 0.2v, and
v. = 0.5v,. Because the crack tip speed changes discontinuously at ¢ = ¢, the stress intensity
factor also changes abruptly at the same time.

(1+sin a)(t—1ty)

d

b 3/2 b 372
3b|/z{[’_"(’—ff) sin @ :l —[I—T—a(t—tf) sin @,] },

b 32 b 32
3b|/2{|:’+ "'j(’_’j)sm 92] —I:i—T-i- -(}(l—l/)sin @2] },

[A,/1—sin ©,+A4,./1+sin O],

172
b
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For Mode-III fracture, the energy fluxes into the propagating crack tip are related to
the stress intensity factor by[9]

Kz
E=

T3t

2ud(]

—b%d)? =

2ub?

E*.

For an incident step stress wave loading, E* can be expressed as

26(1 —p) /2
n(l+v)”2(l+sm ){

[1=8(1=1)sin © ]2+ A4,[1 +6(1 — 1) sin @,)'?

@.1)

— (1 =1)[A,/1—sin ©,+A,/1+sin ©,+2(1 +sin a)?cos O ]}?, (4.2)
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Fig. 7. The stress intensity factor history for incidence stress wave loadmg and the onset of crack
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Fig. 8. The stress intensity factor history for incident stress wave loading and the onset of crack
growth at constant speed v, = 0.50, after some delay time I, with various kinking angles.

where
b=0bld, =11,

and {4 can be obtained from (3.13). It is of interest to compute the kinking angle & and
normalized crack speed ¢ at which E* attains its maximum value for various values of «.
The conditions for this to occur are

OE*[db = 0, QE*[0i* < 0, 4.3)

and
OE*[d6 = 0, 0*E*[86* < 0. 4.4

For the special case , = 0 and a = 0 (or « = x/2), the system of equations in (4.3) and
(4.4) can be solved analytically

=0, b=(/5-1)2, E,=0765 fora=0,

and

s§=mn/2, 6=./3/5, E*, =0545 fora=n/2.

All other incident angles between 0 and n/2 can be solved numerically which is shown
in Fig. 9. It compares very closely with the results in [25] for the five incident angles a = 0,
n/8, n/4, 3n/8 and n/2. The general features are that the kinked crack speed i increases
as a increases for E* to achieve its maximum value EJ,,, and for the whole range of «,
the kinked angle  is just slightly larger than a.

For the general case, the delay time is not zero. It is shown in Fig. 10 for two incident
angles a = n/8 and n/4 for the whole time history of a propagating crack tip such that s and é
satisfy eqns (4.3) and (4.4). It is worthy to note that for all cases[25] (i.e. ¢, = 0) always over-
estimate  and E%,,. The kinking angle § is approximately constant until ¢/t reaches 0.8, and
thereafter it drops to zero rapidly.
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Fig. 9. Kinking angle and crack tip speed for E?,,, for various angles of incident shear wave and
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DISCUSSION

Solutions of antiplane problems frequently suggest the proper steps for the approach
to solve in-plane problems. There are some principal differences in the basic mechanisms
of crack branching for the antiplane and inplane cases. Branches of a primary crack
under pure Mode-I loading generally are subjected to both Mode-I and Mode-II loading
conditions, whereas mixed loading conditions do not occur in antiplane strain. The extent
of the inclusion of a delay time to the inplane case will be a great help to understand the
criterion of the kinked crack from comparing with the available experimental result.

With the inclusion of a delay time, the solution of the fracture problem makes a great
deal more sense physically and more closely models real material response. This allows
something reasonably definite to be said about the initiation of crack growth. Frequently,
an energy based fracture criterion is used to look at the initiation of crack tip motion. The
criterion is based on the assumption that the energy release rate at initiation of fracture is
a material parameter. For static fracture under small scale yielding conditions this is well
established, but for dynamic fracture, it is not clear that this is a suitable criterion beyond
the initiation phase. However, assuming that an energy based criterion is suitable, the
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Fig, 10. Kinking angle and crack tip speed for E%,,, for f,not equal to zero and « = /8, x/4.
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energy criterion suggests that the crack will choose to propagate in the direction and at
velocity for which the energy flux into the crack tip has a maximum value. Based on this
energy criterion and the results as shown in Fig. 10, it shows that for any angle of the
incident shear wave, the crack will generally not kink. Achenbach and Kuo[30] also
come to the same conclusion in their study on kinking of a crack in a prestressed body
under the influence of incident stress waves. From experimental observations[1, 5-8], the
crack does not kink at a distinct angle but curves gradually for some time before finding a
fixed angle of propagation. The assumption of small scale yielding precludes us modeling
this region in detail. However, the results in Fig. 10 for 1//r > 0 seem to indicate that, if the
details of how the crack kink are not too important, the angle of crack propagation may
be at some angle J not equal to zero. For dynamic crack propagation, the application of
the maximum energy release rate criterion would require the elastodynamic stress intensity
factors for arbitrary kinking angle and time varying crack tip speed. These are not available
yet.

As observed by Ravi-Chandar and Knauss[l, 5-8] that the crack will most likely
grow straight ahead of the original crack for crack tip speeds less than about 30% of the
Rayleigh wave speed. The next step in the analysis to make it more physically correct, is to
allow crack propagation before kinking or bifurcation. This problem is a great deal more
difficult to solve but it must be attempted if we want to simulate the real physical response.
The bifurcation event can be thought of as the rapidly propagating crack suddenly stopping
and instantaneously (or after some delay time) bifurcating (or kinking). The stresses due to
the sudden stopping must first be worked out for no kinking, then a similar method to the
one used in this paper may again be applied. The problem mentioned will be an important
analytical step in developing a criterion for kinking of a rapidly propagating crack.
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